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Residual dipolar couplings (RDCs), induced by aligned cosolutes,
have revolutionized biomolecular three-dimensional structure pre-
diction.1 In the absence of strong electrostatic effects, steric
interactions are sufficient to explain the alignment,2 e.g., when using
DMPC-DHPC bicelles. This has led to the development of
methods for predicting alignment tensors a priori, making residual
dipolar couplings easier to interpret, and increasing the applicability
of the approach to more complex structural problems. Although
alignment can be predicted by tedious simulations,3 no methods
have been proposed which are simple to use, highly predictive,
and consistent with these simulations. This restricts our intuition
and limits the use of residual dipolar couplings in interpreting
dynamic molecular structure, for example.

A novel approach is used here to derive an expression for the
alignment tensor induced by a neutral and dilute cosolute, based
on hydrodynamic shape. The derived expression is simple, highly
predictive, and consistent with simulations of alignment. It is
compared and tested against recently reported methods of alignment
prediction.

The Saupe order matrix defines the degree of alignment of a
molecule and establishes the relationship between measured residual
dipolar couplings and their directions in the molecular frame,4 often
referred to as the alignment tensor. When induced by a neutral and
dilute cosolute, the alignment tensor is dependent on the shape of
the aligned molecules. A suitable descriptor of molecular shape is
the second moment of the atomic distribution, eq 1, also known as
the gyration tensor, forN atoms at positionsx(r) (uniform mass
assumed).

Use of eq 1 allows aligned molecules to be represented as
equivalent ellipsoids, which are known to provide very effective
hydrodynamic descriptions of compact molecular shapes, e.g.,
globular proteins.5 Equivalent ellipsoids share characteristic lengths
(F1, F2, and F3) with the molecules they describe, which are the
square roots of the eigenvalues ofR2. Since alignment is primarily
dependent on shape, a dimensionless scalarδ was defined as the
ratio between differences in characteristic length, eq 2, where

F1 > F2 > F3. By similarity, a parameterσ was defined from the
distance between the molecular center of geometry and the
alignment surface,r. It is hypothesized thatδ describes the form
of the alignment tensor but not its magnitude.

Order matrices were calculated numerically for the case of an
ellipsoid obstructed by a planar wall.3,6 Computationally, ellipsoids
were represented as a mesh of points distributed evenly over its
surface, and orientations in which its surface intersects the obstacle
were rejected. In this case, the eigenvectors ofR2 are linearly related
to the semi-axes of the ellipsoid, and althoughS is most generally
a tensor of rank 2, by symmetryS is reducible to a tensor of rank
1 in the eigenbasis of the gyration tensor.7-9 Thus, it can be
described by three components, with two degrees of freedom
(traceless). These three diagonal components of the order matrix
were calculated throughout the aligned region, and for a range of
δ values, to yieldS(σ,δ). For σ < 0 the molecule is excluded, and
for σ > 1 no alignment is possible, and thusS) 0. Figure 1 shows
the order matrix for a range of fixedδ (i.e., shape) at varying
distances from the plane. The graphs show that maximum contribu-
tion to alignment occurs in the middle region, whereσ ≈ 0.5, and
although states where the molecule is extremely close to the surface
produce the most alignment, they are rarely populated.

The average ofS(σ,δ) overσ is the scale-independent alignment
tensor, i.e., that which depends on relative rather than absolute
lengths. Figure 2 shows that the three simulated components ofS
are linear functions to a good approximation. Linear (affine) fitting
allows the approximation of eq 3 to be obtained, which has a simple

dependence onδ, in the eigenbasis ofR2. For most purposes eq 3
is sufficient to provide the alignment tensor required for the residual
dipolar coupling experiment, sinceS must always be scaled by a
suitable constant, dependent on the concentration of the aligned
media.

Therefore, using the theory above, a prediction of the alignment
tensor is made in the following way. The characteristic lengths for
the molecule in question are calculated using the eigenvalues of
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Figure 1. Simulated diagonal components (S11,S22,S33) of the order matrix
for ellipsoids, of shapeδ, at varying distances (σ) from a planar obstacle.
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eq 1, allowingδ to be evaluated using expression 2. This permits
calculation of the scale-independent alignment tensorS, eq 3.
Finally, this S is scaled by a suitable constant to best fit the
experimental data. Predictions based on this method have been
performed for a series of proteins found in the Protein Data Bank
(PDB), as used by Fernandes et al.8 For these proteins, residual
dipolar couplings have been measured previously under conditions
of a neutral aligning cosolute.8 Correlation coefficients for the fit
against experimental data are given in Table 1, confirming that eq
3 provides consistently excellent predictions of alignment for these
proteins.

It is also possible to calculate the scale-dependent form of the
alignment tensor by introducing a multiplicative factor∝ (F1 - F3)
to all expressions above. This is required when comparing different
aligned molecules at the same concentration and type of alignment
media, for example. The relevant expressions for cyclici,j,k are
given in eq 4, again subject to a scaling, linearly dependent on
aligning media concentration.

Recently, other methods have been proposed which predict
alignment tensors in neutral dilute liquid crystal solutions.3,8,9 A
consistency check shows that expression 3 is in excellent agreement
with the SSIA algorithm3 for compact protein shapes. In these cases,
eq 3 can obtain values within a few percent of SSIA at a fraction
of the processing power. Therefore, the cumbersome SSIA method
can be avoided in all but the most problematic of situations.

An alternative method (TRAMITE) has been proposed for
calculating the alignment tensor from the molecular inertia tensor
(I).9 The central expression of this method can be rewritten in terms
of length, eq 5, sinceI andmR2 share the same set of eigenvectors
(see Supporting Information;m is molecular mass). However, based

on simulation, this expression should be linear in length and have
no dependence on mass. To illustrate the consequences of nonlinear
lengths present in eq 5, consider two ellipsoids with (F1,F2,F3) of
(4,3,2) and (8,6,4). It can be shown by simulation that they possess
the same alignment tensors, subject to a linear scaling of 2.
However, eq 5, dependent on square distances, does not provide
this; only eq 4, being linear in length, gives the correct prediction,
allowing the relative magnitude of alignment of different molecules
to be predicted. Due to this nonlinearity, predictions from eq 5
become progressively worse for highly prolate or oblate anisotropic
molecules. For example, Figure 2 shows predictions made with
TRAMITE9 for molecules with low and highF1/F3. For high values

it deviates markedly from the simulation predictions, particularly
when full anisotropy is present (δ ≈ 0.5). Although predictions
from eqs 4 and 5 are almost indistinguishable for axial ratios likely
to be present in biomolecules, only the constant of proportionality
between predictions made using eq 4 and experimental data has
physical significance, being linearly dependent on both aligned
cosolute concentration and molecular length. This is physically
intuitive because it is well known that residual dipolar couplings
are linearly dependent on aligning media concentration.

The expression derived by Fernandes et al.8 uses analytical
methods to study the alignment of ellipsoids by a planar wall.
However, the main derivation is restricted to the case of an axially
symmetric ellipsoid. Generalization to full anisotropy is achieved
using a “rhombicity correction”, which employs the eigenvalues
of R2 directly, i.e., nonlinear lengths. Their expression8 is therefore
a mixture of linear and nonlinear dependencies on length, again
not in agreement with simulation. The effect of this combination
is a method with less predictive capacity than eq 3, as shown by
Table 1.

Therefore, eq 3 is the only expression to date which can provide
simple, accurate predictions of the alignment tensor for neutral and
dilute alignment media, while being consistent with simulations of
alignment. It provides predictions in a fraction of the time of a
simulation approach, while aiding physical intuition by providing
a direct link between hydrodynamic shape and the alignment tensor.
Not only is this physically gratifying, but it also permits residual
dipolar couplings to be applied in demanding situations where
simulations of alignment are not desirable, such as in studies of
molecular dynamics.
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Figure 2. Predicted diagonal components of the alignment tensor from
(left) the model presented here and (right) TRAMITE,9 compared against
those obtained from a full simulation approach (solid lines).

Table 1. Capacity of Different Models To Predict Experimental
Residual NH Dipolar Coupling Data

correlation coefficients

PDB codea shape δ eq 3 TRAMITE9 analytical8,b

2ezx 0.119 0.9899 0.9896 0.98
2ezm 0.107 0.8277 0.8415 0.68
1khm 0.310 0.9127 0.9105 0.83
1cmz 0.173 0.9511 0.9537 0.92
1d3z 0.309 0.8737 0.8892 0.72
3gb1 0.244 0.9891 0.9885 0.96
1e8l 0.100 0.9418 0.9414 0.90

a Citations to the original experimental data are contained in Fernandes
et al.8 b Values taken directly from original publication.
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